本文转载至https://blog.csdn.net/qq_29831163/article/details/89735728
单服务台混合制模型
单服务台混合制模型 M / M /1/ K 是指:顾客的相继到达时间服从参数为λ 的负指数 分布,服务台个数为1,服务时间V 服从参数为 μ 的负指数分布,系统的空间为 K ,当 K 个位置已被顾客占用时,新到的顾客自动离去,当系统中有空位置时,新到的顾客进入系统排队等待。
由于排队系统的容量有限,只有 K −1个排队位置,因此,当系统空间被占满时, 再来的顾客将不能进入系统排队,也就是说不能保证所有到达的顾客都能进入系统等待服务。假设顾客的到达率(单位时间内来到系统的顾客的平均数)为 λ ,则当系统处 于状态 K 时,顾客不能进入系统,即顾客可进入系统的概率是。因此,单位时间内实际可进入系统的顾客的平均数为:
相关字母含义注释
举例
例 5 某修理站只有一个修理工,且站内最多只能停放 4 台待修的机器。设待修机 器按 Poisson 流到达修理站,平均每分钟到达 1 台;修理时间服从负指数分布,平均每 1.25 分钟可修理 1 台,试求该系统的有关指标。
解 该系统可看成是一个 M / M /1/ 4 排队系统,其中