关于最大网络流知识,本文转载至https://blog.csdn.net/vonmax007/article/details/64921089。
概念引入
最大流的含义:从源点到经过的所有路径的对中到达汇点的所有流量和。
流网络G=(V,E)是一个有向图,每条边(u,v)∈E均有一个非负的容量c(u,v)≥0.
如果(u,v)不属于E,则假定c(u,v)=0。整个流网络中有两个特殊点:源点S和汇点T
具体的流网络实例如下图所示:
基础知识准备
对一个流网络G=(V,E),其容量函数为c,源点和汇点分别为s和t。G的流f满足下列三个性质:
容量限制:对所有的u,v∈V,要求f(u,v)<=c(u,v)。
反对称性:对所有的u,v∈V,要求f(u,v)=-f(v,u)。
流守恒性:对所有u∈V-{s,t},要求∑f(u,v)=0 (v∈V)。
容量限制:很好理解即一个顶点到另一个顶点的最大流量。
反对称性:说明了从顶点u到顶点v的流是其反向流求负所得,即流的一正一反大小上来说是一样的。
流守恒性:说明了从非源点和非汇点的顶点出发的网络流之和为0,即从该顶点流入的流量和流出的流量大小是一致的。
在求解最大流的问题前,必须对三个概念有所了解:残留网络,增广路径和割。下面先给出这三个概念的基本内容。
残留网络
首先说明残留容量,任意的顶点u,v∈V,在不超过容量c(u,v)的条件下,从u到v之间可以压入的额外网络流量,就是(u,v)的残留容量。例如:a->b最多能流入5单位的流量,此时只流入了3单位,剩下的2单位就是残留容量。
而由所有属于G的边的残留容量所构成的带权有向图就是G的残留网络。
具体实例对比如图所示:
残留网络中的边既可以是E里面的边,也可以是此边的反向边。只有当两条边(u,v)和(v,u)中,至少有一条边出现在初始网络中时,边(u,v)才会出现在残留网络中。下面是一个有关残留网络的定理,若f是G中的一个流,Gf是由G导出的残留网络,f’是Gf中的一个流,则f+f’是G中一个流,且其值|f+f’|=|f|+|f’|。证明时只要证明f+f’这个流在G中满足之前所讲述的三个原则即可。在这里只给出理解性的证明,可以想象如果在一个管道中流动的水的总流量为f,而在该管道剩余的流量中存在一个流f’可以满足不会超过管道剩余流量的最大限,那么将f和f’合并后,也必定不会超过管道的总流量,而合并后的总流量值也一定是|f|+|f’|。
如:设管道中最大可以流MAX=8单位的水,此时f为5单位,f’的最大值则为3,设定此时f’为2,则f+f’=7≤MAX。|f+f’|=|f|+|f’|=7
增广路径
增光路径p为残留网络Gf中从s到t的一条简单路径。根据定义在不违反容量限制的情况下,G中增广路径上的每条边(u,v)可以容纳从u到v的某额外正网络流。而能够在这条路径上的网络流的最大值一定是p中边的残留容量的最小值。
我们将最大量为p的残留网络定义为:cf(p)=min{cf(u,v) | (u,v)在p上}。而结合之前在残留网络中定理,由于p一定是残留网络中从s到t的一条路径,且|f’|=cf(p),所以若已知G中的流f,则有|f|+|cf(p)|>|f|且|f|+|cf(p)|不会超过容量限制。
割
流网络G(V,E)的割(S,T)将V划分成为S和T=V-S两部分,使得s∈S,t∈T。如果f是一个流,则穿过割(S,T)的净流被定义为f(S,T)=∑f(x,y) (x∈S,y∈T),割(S,T)的容量为c(S,T)。一个网络的最小割就是网络中所有割中具有最小容量的割。设f为G中的一个流,且(S,T)是G中的一个割,则通过割(S,T)的净流f(S,T)=|f|。因为f(S,T)=f(S,V)-f(S,S)=f(S,V)=f(s,V)+f(S-s,V)=f(s,V)=|f|(这里的公式根据f(X,Y)=∑f(x,y) (x∈X,y∈Y)的定义,以及前面的三个限制应该还是可以推出来的,这里就不细讲了)。有了上面这个定理,我们可以知道当把流不断增大时,流f的值|f|不断的接近最小割的容量直到相等,如果这时可以再增大流f,则f必定会超过某个最小的割得容量,则就会存在一个f(S,T)<=c(S,T)<|f|,显然根据上面的定理这是不可能。所以最大流必定不超过网络最小割的容量。
网络流最大流模型
有n个点,有m条有向边,有一个点很特殊,只出不进,叫做源点,通常规定为1号点。另一个点也很特殊,只进不出,叫做汇点,通常规定为n号点。每条有向边上有两个量,容量和流量,从i到j的容量通常用c[I,j]表示,流量则通常是f[I,j]。通常可以把这些边想象成道路,流量就是这条道路的车流量,容量就是道路可承受的最大的车流量。很显然的,流量<=容量。而对于每个不是源点和汇点的点来说,可以类比的想象成没有存储功能的货物的中转站,所有”进入”他们的流量和等于所有从他本身”出去”的流量。
把源点比作工厂的话,问题就是求从工厂最大可以发出多少货物,是不至于超过道路的容量限制,也就是,最大流。
如何求最大流
首先,假如所有边上的流量都没有超过容量(不大于容量),那么就把这一组流量,或者说,这个流,称为一个可行流。一个最简单的例子就是,零流,即所有的流量都是0的流。
我们就从这个零流开始考虑,假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值delta。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流,这是显然的。
这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路。
我们不断地从起点开始寻找增广路,每次都对其进行增广,直到源点和汇点不连通,也就是找不到增广路为止。当找不到增广路的时候,当前的流量就是最大流,这个结论非常重要。
寻找增广路的时候我们可以简单的从源点开始做bfs,并不断修改这条路上的delta量,直到找到源点或者找不到增广路。
这里要先补充一点,在程序实现的时候,我们通常只是用一个c数组来记录容量,而不记录流量,当流量+1的时候,我们可以通过容量-1来实现,以方便程序的实现。
但事实上并没有这么简单,上面所说的增广路还不完整,比如说下面这个网络流模型。
我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。
于是我们修改后得到了下面这个流。(图中的数字是容量)
这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。
但是,
这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流
那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。
而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。我们直接来看它是如何解决的:
在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。
即在Dec(c[x,y],delta)
的同时,Inc(c[y,x],delta)
我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下:
这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。
那么,这么做为什么会是对的呢?
事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给“退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。
如果这里没有2-4怎么办?
这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点
同时本来在3-4上的流量由1-3-4这条路来“接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流。
by Covteam-Sma11_Tim3
生活不易,多才多艺。